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ABSTRACT 

We analyze the consequences of models of structure formation for higher-order (n-point) galaxy 

correlation functions in the mildly non-linear regime. Several variations of the standard 0 = 1 cold 

dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain 

more power on large scales, R+. * 20 h-’ Mpc, e.g., low-matter-density (non-zero cosmological constant) 

models, ‘tilted’ primordial spectra, and scenarios with a mixture of cold and hot dark matter. They 

also include modela with an effective scale-dependent bias, such as the cooperative galaxy formation 

scenario of Bower, etal. (1993). We show that higheforder (n-point) galaxy correlation functions can 

provide a useful test of such models and CM discriminate between models with true large-scale power in 

the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid 

scale-dependence leads to.a dramatic decrease of the hierarchical amplitudes Q J at large scales, r 2 RP. 

Current observational constraints on the three-point amplitudes Qi and S3 can place limits on the bias 

parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is 

responsible for the extra power observed on large scales. 
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1 Introduction 

Recent observations of galaxy clustering in both photometric and spectroscopic surveys have found more 

relative power on large scales, 4 N 20 h-’ Mpc (h = Ho/100 km/sec/Mpc), than that expected in the 

standard cold dark matter (CDM) model of structure formation (e.g., Maddox, etal. 1990, Efstatbiou, 

etal. 1990, Baumgart and Fry 1991, Gramann and Einasto 1991, Hamilton, &al. 1991, Peacock and 

Nicholson 1991, Saunders, &al. 1991, Loveday, etal. 1992, Fisher, etal. 1992, Park, &al. 1992, Vogeley, 

etal. 1992, Feldman, etal. 1993). More precisely, the shape of the obsenred galaxy power spectrum 

P,(k) or of its Fourier transform, the two-point galaxy correlation function c,(r), differs on these scales 

from the standard CDM model prediction. 

Recall that in the standard CDM model, the Universe is spatially flat, with a density Rcdm = 

1 - Rg N 0.95 in non-baryonic, weakly interacting particles which have negligible free-streaming length, 

and the Hubble parameter h = 0.5. Additionally, one posits that the density perturbations responsible 

for large-scale structure are adiabatic and Gaussian, with a scale-invariant primordial power spectrum 

P(k) = (l6~Jt;)l*) y k, as expected in canonical inRation scenarios. The present spectrum is related 

to the primordial one through the transfer function, T(k; Gi, h), which encodes the scale-dependence of 

thelinear growth of perturbations, (h$Jte)l*) = T2(k)(16k(ti)12). Finally, the galaxy power spectrum is 

related to the density spectrum by a bias factor be, 

P,(k) = b~T2(k)/6t(ti)12 . (U 

~A number of alternatives have been suggested to remedy the shape of the CDM galaxy spectrum, 

each of which involve modifications of one or more of the standard ingredients of the CDM model in 

equation (1). These include models with a lower density of cold dark matter, &,h u 0.2, plus a 

cosmological constant to retain spatial flatness (Efstathiou, Sutherland, and Maddox 1990), and models 

with a mixture of cold and hot dark matter, Rd,,, u 0.7, Gh&,, z 0.3 (e.g., Schaefer, &al. 1989, 

van Dalen and Schaefer 1992, Taylor and Rowan-Robinson 1992, Davis, &al. 1992, Pogosyan and 

Starobinsky 1992, Klypin, etal. 1992). In these two cases, the transfer function T(k) is flattened on 

scales k-’ m Rp compared to standard CDM. CDM models with ‘tilted’ non-scale-invariant, power-law 

primordial spectra, (/6k(ri)l’) m k” with n < 1, which arise naturally in several models of inflation, 

have also been recently explored (Adams, &al. 1993, Cen, &al. 1992, Gelb, &al. 1993, Liddle and 

Lyth 1992, Liddle, &al. 1992, Vittorio, etal. 1988). In addition, there is a growing literature on 

models with non-Gaussian initial fluctuations; in some cases, initial skewness and/or kurtosis can lead 

to enhanced structure on large scales (e.g., Moscardini. etal. 1993 and references therein). While such 

models can display interesting behavior of the higher order moments, in this paper we will focus on 

initially Gaussian fluctuations. 

In all these variations on the CDM theme, one important assumption is left unchanged: that the 

observable galaxy distribution is related through a simple bias mechanism to the underlying matter 

distribution predicted by theory (e.g., Bardeen, &al. 1986). In essence, following Kaiser (1984a,b) 

and Bardeen (1984), one assumes that galaxies form from peaks above some global threshold in the 
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smoothed linear density field. In the limit of high threshold and small variance, this model is well 

approximated by the commonly employed linear bias scheme, in which the galaxy and msas density 

fields, 6,(z) = (n&) -r&)/rig and S(z) = (p(c) - ,?,/j?, are linearly related through a constant bias 

factor, 

6,(c) = b,6(c) . (2) 

This relation, implicitly assumed in equation (l), embodies the standard model for biased galaxy for- 

mation. 

Early numerical evidence for biasing came from the CDM simulations of White, etal. (1987), which 

showed that dark matter halos are more strongly clustered than, and thus ‘naturally’ biased with re- 

spect to, the mass. However, since galaxy formation is a complex, non-linear process involving both 

gravitational and non-gravitational interactions, the relation between the mass and the galaxy distribu- 

tions may be more complicated than in the peak bias model. Even purely gravitational high-resolution 

N-body simulations suggest that virialised halos are not always well identified with peaks in the linear 

density field (Katz, Quinn, and Gelb 1992). - 

It is therefore of interest to ask whether a more or less well-motivated modification of the standard 

bias scheme can generate the excess large-scale power within the context of the standard CDM model. 

This idea has been recently studied by Babul and White (1991) and by Bower, etal. (1993) (for 

precursors, see Rees 1985, Silk 1985 and Dekel and Rees 1987). The common thread in these ideas is 

that the bias mechanism can be modulated by environment-dependent effects. For example, in their 

cooperative galaxy formation scenario, Bower, etal. (1993) (hereafter BCFW) suggest that the threshold 

above which perturbations actually form bright galaxies may be lower in large-scale, high-density regions 

than elsewhere. Or perhaps baryons may be inhibited from cooling in regions photoionized by an early 

generation of quasars (Babtd and White 1991). The net result of these feedback mechanisms is that the 

transformation from the density field 6(z) to the galaxy field 6,(r) becomes non-local (by contrast with 

equation (2)), and the effective bias fsztor becomes scale-dependent. If the bias factor increases with 

scale, the galaxy spectrum will have more power at large scales, as desired. This modification of the 

standard CDM scenario is fundamentally different from those mentioned above: with scale-dependent 

bias, the extra large-scale power relative to standard CDM is only apparent, in the sense that it is only 

a property of the galaxy field, not the underlying maze density field; by contrast, in the other CDM 

variants (non-zero A, tilt, or mixed dark matter), there is genuine extra power in the density field. 

In this paper, we consider how the higher order irreducible moments of the galaxy distribution can 

be used as a test of models for large-scale structure. We consider the standard CDM model and its 

variants with extra large-scale power (in particular, Rh = 0.2 CDM), as well as a generalized version 

of the non-local, scale-dependent bias scheme embodied in the cooperative galaxy formation (hereafter, 

CGF) model of BCFW in the context of otherwise-standard CDM. Using the results of second-order 

perturbation theory’(Fry 1984), we compare in detail the predictions of these models for the three- 

point function (3 pith data from the Center for: Astrophysics (CfA, Huchra, etal. 1983), Southern Sky 

(SSRS, Da Costa, etal. 1991), and Perseus-Pisces (Haynes and Giovanelli 1988) redshift surveys in the 
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mildly non-linear regime ((2 < 1). Since (3 is of second-order in the density perturbation amplitude 

for initially Gaussian fluctuations, for self-consistency we must generalize the models to include the 

possibility of non-linear (as well as non-local) bias and extend them from Gaussian to hierarchical 

matter fields. [we will use the well known result that, at least in the mildly non-linear regime, the matter 

field evolved gravitationally from Gaussian initial conditions leads to hierarchical statistics of the form 

(@) 0: (6’)‘-’ (cf. Fry 1984, Goroff e2 al. 1986, Bernardeau 1992).] The allowance for non-linear bia 

introduces an additional dimensionless parameter into the model. Even with this additional degree of 

freedom, we find that the CGF model tends to require rather large values of the bias parameter in order 

to match the 3-point function data, because scale-dependent bias modifies the correlation hierarchy, 

leading to a dramatic decrease of the hierarchical amplitudes Q J at large scales, r 2 Rp. In the context 

of standard CDM, such a high bias is in conflict with the COBE DMR observations of microw&e 

anisotropy on large scales. We show that observations of the 3-point function in Fourier space, Q(k), on 

the largest scales accessible to current redsbift surveys should provide a definitive test of the CGF model 

and of more general models with scale-dependent bias. Our basic conclusion is that the scale-dependent 

bias solution to the problem of extra large-scale power aI&& the 3-p&t functions very differently from 

models with genuine extra power (such as CDM with Rh = 0.2). Thus, the higher-order correlations 

provide an important test to distinguish between different solutions of the extra power problem. 

The paper is organized as follows. In section II, since it may be less familiar to the reader, we 

briefly review and generalize the CGF &de1 and recapitulate the results of BCFW, demonstrating 

the enhancement of the two-point function on large scales required to fit the APM angular correlation 

function data. In section III, we review the results on the j-point and higher order correlations in 

perturbation theory, focusing on the evolution of an initial Gaussian density field into a hierarchical 

field. In section IV, we study the higher order moments in the CGF model. Self-consistency demands 

that we further extend the model to include non-linear bias. In section V, we compare the standard 

CDM, low-density CDM, and CGF-mod&d CDM predictions to the data on the 3-point function from 

the CfA, SSRS, and Perseus-Pisces redsbift surveys and we conclude in section VI. 

2 Cooperative Galaxy Formation and Scale-Dependent Bias 

The cooperative galaxy formation (CGF) model of BCFW is a simple phenomenological prescription 

for obtaining a scale-dependent bias. It starts with the standard assumptions of the CDM model, but 

the biasing mechanism is mod&d from the high peak threshold scenario. In the standard peak bias 

model (Kaiser 1984a,,-Bardeen, etal. 1986), the sites of galaxy formation are identified with peaks 

of the smoothed lineq density field. That is, one convolves the initial density field with a filter of 

characteristic scale Rg - 1 h-l Mp c, and then identifies galaxies with peaks of the smoothed field above 

some threshold vo, i.e., with density maxima satisfying 6(+) > VQ, where oi, = ((p - p)*)/p* is the 

+ariance of the smoothed field, and v sets the threshold height. (Hereafter, we implicitly sssume t&e 

field 6(z) is smoothed on thetcale Rg.) For example, for an infinitely sharp threshold, the galaxy field 

is 6i(lpk) = .9(6(+)-VU). The combination of the threshold peak height v and the spatial smoothing 
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scale Rg is chosen so that the density of peaksreproduces the observed abundance of luminous galaxies; 

moreover, these parameters are taken to be global, spatially invariant quantities. In the limit of high 

threshold (Y > 1) and small variance, the two-point correlation function of the peaks is enhanced over 

that of the maSS by an approximately constant factor (Kaiser 1984a), 

&d~;4 = 5 t(p) 1 0 
where {(I) = (6(r)6(z + P)). Since t(r) is quadratic in the density field, this is equivalent to the linear 

bias model of equation (2), with the identification of the bias factor as bg = (v/a). Following Kaiser 

(1984a) and BCFW, we will apply this model to regions above the threshold, 6(c) > VC, rather than 

to maxima; this simplifies the model while retaining its important features. 

BCFW extend the standard bias model by replacing the universal threshold v with a threshold that 

depends on the mean mass density in a surrounding ‘do&in of influence’ of characteristic size R. > Rg. 

The motivation is to model the possibility that peaks form galaxies more easily (or perhaps form brighter 

galaxies which are included in a magnitude-limited catalog) if there are other peaks nearby-thus the 

name cooperative galaxy formation. Specifically, they sssume that galaxies form from regions satisfying 

6(z) > vm - K&Z; R,) , (4) 

where 8(z; R,) is the density fieldsmoothed on the scale R., and R is the modulation cdefficient of the 

threshold. If 6 > 0, the threshold for galaxy formation is lower in “protosupercluster” regions than in 

“protovoids”. The parameters R, and tc parametrize the scale and strength of cooperative effects; they 

are also constrained by the observed galaxy abundance. 

The model of equation (4) is equivalent to applying the standard threshold bias model to the new 

density field defined by 

6’(z) 9 a(+) + d(z; R.) , (5) 

that is, to imposing the condition 6’ > ~0. Note that 6’ is a Gaussian random field if the underlying 

density field 6 is Gaussian. Here we consider a generalization of the CGF model: -instead of applying a 

sharp threshold clipping to 6’(r), we sssume that the galaxy field is an arbitrary continuous function 

of the field 6’, 

6,(z) = f(6’(z)) = f [6(z) + &(c; R,)] (6) 

For example, in the limit of high threshold, for the standard bias model the function f is approximately 

an exponential, f(z) = exp(vz/o) (Kaiser 1984b, Politzer and Wise 1984). We assume that f is 

expandable in a Taylor series inits argument, 

6, = f(a’) = 5 36” 
k=, k! 

. 

BCFW compute the twwpoint ~correlatitin function for the CGF model 0~1 large scales, u+ing the CDE 

density spectrum derived from linear perturbation theory. In this regime,.our generalized CCF model 
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reduces to the linear bias model applied to the field 6’, 

6&) = b,6’(z) = b, [6(z) + J&E; R,)] (‘3) 

where we have identified b, = bl. That is, by working only to linear order in perturbation theory, one 

should self-consistently include only the lirst (linear) term in the series of equation (7). Conversely, when 

we consider second order perturbations below, we can and should include the possibility of quadratic 

(k = 2) bias. 

Comparing equation (8) with equation (2), it is clear that cooperative effects boost the galaxy power 

spectrum on large scales relative to the standard global bias model. Taking a Gaussian filter for the 

smoothed density field, 

8(z; R*) = (~vTR~)-~‘~ / d3r6(r)exp (- Iz2iii2) , (9) 

the Fourier transforms of the density fields satisfy 

6’W = 6(J4 [I+ MWI , (10) 

where G is the Fourier transform of the window filter in a(~; R.), 

G(k) = G(k) = ,-(kk)‘/2 , (11) 

with k = Ilcl. The galaxy power spectrum, P,(k) = (16,(k)12), is thus related to the density power 

spectrum, P(k) = (16(f412), by 

P,(k) = b;P’(k) = b; [l + tcG(k)]2P(k) P b&(k) P(k) . 02) 

This expression makes manifest how cooperative effects result in an effective scale-dependent bias, 

46(k) = b,[l + t@(k)]. On small lengthscales, k-’ < R,, equation (12)-implies the usual bias factor, 

ber(k * co) z b,, while on large scales, k-’ > R,, the efftitive bias factor is increased to b&k -t 0) u 

b,(l + n). In the parameter range studied by BCFW, the choice K = 2.29, R, = 20h-’ Mpc appears to 

give the best fit to the observed extra large-scale power for CDM when compared to the APM angular 

correlation function, and we shall focus mainly on this case. We see that this choice boosts the galaxy 

power spectrum on scales k 5 0.05h Mpc-’ by over a factor of ten. 

To see what these effects look like graphically for the CDM model, we consider the linear CDM 

density power spectrum of Davis, &al. (1985), 

P(k) = Au;k 
1.7k 

1 + - 
9k312 

flh + (Qh)W + ’ 

where the wavenumber k is in units of h Mpc- ‘. Here the normalization is set as usual in terms of the 

variance of the linear mass fluctuation within @hems of radius 8 h-’ Mpc, 0s f.~ ((6I~f/I~f)~)~s,-, Mpc, 

where 

CT; = &j?fkk2P(k)W2(kR) , 
0 
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and the tophat window function 

WkR) = & (sin kR - kRcos kR) (15) 

filters out the contribution from small scales. For standard CDM with Rh = 0.5, this gives A = 

2.76 x 105( h-’ M~c)~. 

Substituting the CDM power spectrum with Rh = 0.5 into equation (12), we find the galaxy two- 

point correlation function for the CGF model 

&,b) = $jdk k2$$Pg(k) , 

shown in Fig. 1 (the curve labelled CGF, with K = 2.29, RB = 20h-’ Mpc). Note that we actually 

plot E&)/V+od2, where b, is the constant factor in equation (8). Redshift surveys of optically selected 

galaxies (in particular the CfA and Stromlo-APM surveys) indicate that the variance in galaxy counts 

on 8 h-’ Mpc scale is of order unity. Thus, in a linear, scale-independent bias model, the bias factor for 

these galaxies would be expected to be b opt z l/ag; for other galaxy populations, however, bg,,ps may 

differ from unity. For comparison, in Fig. 1 we also show the two-point function for standard CDM 

(Rh = 0.5, n = 0) and for a low-matter-density CDM model (Rh = 0.2). Both the CGF model and 

the low-density CDM model have sufficient relative large-scale power to approximately reproduce the 

observed galaxy angular co-elation function w(0) inferred from the APM survey (BCFW, Maddox, etal. 

1990, Efstathiou, Sutherland, and Maddox 1990). This level of extra power is also broadly consistent 

with that inferred from the power spectrum of IRAS galaxies (Feldman, &al. 1993, Fisher, &al. 1992) 

and the redshift-space two-point function t(s) inferred from the Stromlo-APM survey (Loveday, &al. 

1992). The CGF curve in Fig. 1 should be compared to that in Fig. 2 of BCFW. Note that the linear 

bias approximation used here (equation (8)) diff ers from the non-linear threshold formula of BCFW 

(Cf. their eqn.(lO)), but that our final result for t(r) is very similar to theirs. 

Thus, cooperative effects can mimic extra large-scale I&ver in the galaxy two-point function, while 

the other remedies for CDM, such as low-density, mixed dark matter, or tilted (n < 1) models, have 

genuine extra large-scale power in the spectrum. How can we discriminate between these choices for 

extra large-scale power, that is, between real power and the illusion of power? Below, we argue that 

the three-point function cafe provide a distinguishing test, at least for models with Gaussian initial 

fluctuations. The reason is that the galaxy three-point function induced by gravitational evolution 

depends in large measure on the tw-point function of the mass. 

Before turning to higher order correlations, we remark that the treatment given here and below 

applies more generally than to the CGF model, and in fact to any model with scale-dependent biti. 

That is, the chain of reasoning above is invertible: if the galaxy and density power spectra are related 

by a scale-dependent bias, PJk) = b2(k)P(k), we can always think of the galaxy field 6,(z) as arising 

from some non-local transf&mation of the density field 6(r). To see this, let b2(k) = bjf2(k), where 

6, is a constant and we assume that f2(k) has a limit, f2(k + 03) = 1. Then consider the field 

6’(k) = 6,(k)/bg = f(k)6(k). We can write j(k) = 1 + G(k), where lim G(k + co) = 0, ad we can 
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choose K such that lim G(k + 0) = 1, so that 6’(k) = b(k)(l+ d(k)]. Comparing with equation (lo), 

we see that this expression, where G(k) is interpreted as the Fourier transform of some window function 

(which in general will not be a Gaussian), is all that we need for the results discussed here and below 

to go through. Provided the function b(k) is not too pathological, this Fourier transform should exist. 

3 3-point correlation function in perturbation theory 

We want to consider how scale-dependent bias, as embodied for example in the CGF model, affects 

the higher order correlation functions. The motivation for this study is that the galaxy three-point 

function is observed to scale in a particular way with the’ two-point function, and both perturbation 

theory and N-body simulations show that this scaling can arise via non-linear gravitational evolution 

from Gaussian initial fluctuations. Since scale-dependent bias introduces a different scale behavior into 

the problem, we would expect it to be manifest as a change in the scaling behavior of the higher order 

correlations. We will work in the context of second-order perturbation theory (Fry 1984), the results of 

which we review here before discussing how they are modified by scale-dependent bias. The perturbative 

approach should be valid in the mildly non-linear regime, 6 5 1. In the range where they overlap, the 

second-order perturbation theory results below for S3 in standard CDM appear to be quite consistent 

with-the N-body simulations of Bouchet and Hernquist (1992). 

Del%ing the Fourier transform of the density field, 

6(k) = + /d3z6(+)eik- , (17) 

we consider the two- and three-point correlation functions in k-space, (6(k1)6(k3) ) and (6(k1)6(k2)6(k3) ), 

which are the Fourier transforms of the spatial two- and three-point functions (3(21, ~2) and [3(c1,z3,z3). 

By homogeneity and isotropy, the k-space moments are non-zero only for C ki = 0, 

(6(kM(k22)) = 6kl+k,,of’(h) 9 (6(h)6(k2)6(&3)) = 6k,+k2+kr,oBh> kz, kd . (18) 

This defines the power spectrum P(k) = ( 16(k)12) and the bispectrum B123 = i?(kl, k2, k3). 

Early observations of clustering on small scales (Groth and Peebles 1977) suggested that the galaxy 

two- and three-point functions obey a scaling hierarchy, 

t3(=1,=2,=3) = Q [t22(~1,~2)(22(~2,~3) + (1 * 2) + (2 - 3)] (1% 

with Q~= constant w 1, roughly independent of the size and shape of the triangle formed by the points 

II, ~3~13. If the scaling of equation (19) holds exactly, then the hierarchical 3-p&t amplitude Q is 

also related to the bispectrum by the k-space version of equation (19) (Fry and Seldner 1982), 

QS B123 

p1p2+PlP3+P2P3 ’ (20) 

with UP; z P(k;). We will consider equation (20) as the definition of the amplitude Q, even if it is not 

constant. In the strongly non-linear regime 6 > 1, N-body simulations of CDM and power-law spectrum 
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models do seem to display the approximate shape- and size-indepedence of equation (19) (Fry, Melott, 

and Shandarin 1993). However, in second-order perturbation theory in the mildly non-linear regime, 

while Q as defined in equation (20) obeys the scaling with size, it does depend on the shape of the 

configuration in k-space. 

To calculate the three-point function in the weakly non-linear regime, one expands the pertur- 

bation equations in powers of 6, 6(z,t) = 6(‘)(z,t) + 6c2)(z,t) + . . . . where 6(l) is the linear so- 

lution, and 6(‘) = 0(6(1))2 is the second-order solution, obtained by using the linear solution in 

the source terms. For Gaussian initial fluctuations, the three-point function vanishes to linear or- 

der, (6(‘)(11)6(‘)(~2)6(‘)(~3)) = 0, and the low&t order contribution to the bispectrum is B123 = 

(6(1)(k1)6(1)(k:2)6(2)(k3))+(1 ++ 3) + (2 * 3), with the result 

&2X= [T +(e) (~+$)+;(~)2]P,P2+ (l-3)+ (203) (21) 

(Fry 1984). Strictly speaking, this result holds for initially Gaussian fluctuations in a matter-dominated 

universe with R = 1, but the work of Juszkiewicz and Bouchet (1991) shows that the dependence of 

the three-point function on fl is extremely slight. A particular cake of impor&ce is that of equilateral 

triangle configurations in k-space, kl = k2 = k3, for which Q(k) s QA = 4/7, independent of P(k). 

The independence of this result of the power sp&trum makes it a useful quantity for distinguishipg 

gravitational from non-gravitational (e.g., bias) effects. (In general, for other co&urations or averages 

over configurations, there will be a small dependence on P(k).) In section IV, we will see how this result 

is modified by constant and scale-dependent bias, and compare these predictions with observations. 

Another useful and increasingly popular characterization of the three-point amplitude, which does 

depend on P(k), is the hierarchical averaged amplitude S3, 

s3(v) = E3V’) _ (63(=; VI) 

@i - (@kV)Y . 
(22) 

Here f2 and & are the 2-p&t and 3-point density correlation functions averaged over a window function 

W(r) of characteristic volume V: 

z22(v) = A// d3rld3rz E2&1 - r2l)W~1W’(r2) 

T3(V) 1 =jz //I d3r,d3d3v ~33(rl,r2,r3)W(fl)W(f2)W(r3) (23) 

In comparing with model predictions, it is useful to think of S3 as the ratio of moments of the density 

field 6(2; V) smoothed over the volume V (Cf. equation (22)), 

6(2;V) = i Jd3r 6(a:+r)W(r) (24) 

Thus, fz(V) is just the variance of the smoothed detiity field, given by equation (14), and f3(V)is 

its skewness. (The smoothing discussed here should~ not be confused with the smoothed density field 

introduced in the CGF model of equation (5); in the CGF model, the smoothing radius is associated 
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with the physical scale of threshold modulation effects, while here it merely defines the resolution with 

which one observationally probes the density field.) 

Following standard practice, we evaluate S3 with a top-hat window: for the volume V = 4*R3/3, 

W(r) = 1 for r < R and vanishes for T > R; its Fourier transform W(kR) is given by equation (15). 

In this case, $2 and & are related to the moments of counts in cells of volume V, and the skewness is 

given by 

(6’(R)) = &// d3k~d3kS(h, kz, Ih + k2l)W(klR)W(k,R)W(lkl+ kzlR) (25) 

In Fig.2, we plot S3 as a function of the top-hat smoothing radius R for CDM power spectra with 

flh = 0.5 and Qh e 0.2 (Cf. (13)), using the second-order perturbation theory result (21) for the 

bispectrum (and assuming that the smoothing radius R is much larger than the galaxy smoothing 

radius R, w 1 h-’ Mpc). In computing S3 for the low-density model, we have ignored the tiny correction 

for fl # 1 (Juszkiewicz and Bouchet 1991). The result for the CGF model, also shown here, will be 

discussed below in section IV. So far BS we are aware, these numerical results for S3 for CDM are new. 

(Go&f et al. 1986 roughly integrated S3 for CDM with a Gaussian smoothing window using Monte 

Carlo integration, and we have also studied S3 for Gaussian smoothing. Top hat smoothing requires a 

more accurate numerical integrator, and we have checked our integration code by comparing with the 

analytic results of Juszkiewicz and Bow&et (1991) for S3 for power law ape&r&-see below). Where our 

results overlap with the N-body results of Bouchet and Hernquist (1992), the agreement is quite good. 

We see that S3 does vary with scale R in a manner that depends on the shape of the power spectrum, 

because the CDM spectrum is not exactly scale-free. For a scale-free, power-law spectrum P(k) 0: k”, R 

can be scaled out of the expression for S3, i.e., S3 is a constant, and its value can be found analytically, 

S3(R) = 34/7 - (n + 3) (Juszkiewicz and Bouchet 1991). On the other hand, for a purely unsmoothed 

&Id, R = 0, W(kR) 7 1, the normalized skewness is 53(O) = 34/7, independent of the power spectrum 

(Peebles 1980). 

The hierarchical behavior of the three-point function in perturbation theory extends to higher order 

correlations, so one can define higher order hierachical amplitudes QJ cz CJ/.$-’ or SJ = &/<i-’ 

which have characteristic amplitudes set by gravitational instability (see Peebles 1980, Fry 1984, Goroff 

et al. 1986, Bemardeau 1992). 

4 Scale-dependent bias and the 3-point correlations 

We now turn ta study how the J-point correlation amplitudes, and in particular the three-point function, 

are affected by constant and scale-dependent biasing. Because we consider the 3-point function (3, 

we must extepd the CGF model to the cake in which the matter distribution is not just Gaussian 

but hierarchical, i.e., we consider the contribution of second-order gravitational evolution. Fry and 

Gaztan;iga (1993.a) have shown that the first-order contribution of biasing to [3 is comparable to the 

contribution &om second-order gravitational evolution and, thus, it is not consistent to assume a purely 

Gaussian density field. We first consider how the non-local cooperative modulation of the density field 
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affects the S-point function, and then study how it is further affected by linear and non-linear bias, that 

is, we consider the sequence of transformations 6 -) 6’ + 6,. 

4.1 CooperatiVe bias 

Consider the effect on the 3-point amplitude of the non-local, cooperative linear transformation of the 

density field given in equation (10). The bispectrum of the cooperative field 6’(z) is 

&23 = 8123 (1 + &I)(1 + &22)(1+ d33) , (26) 

where Gi s G(ki) is given by epuation (11). The hierarchical 3-point amplitude Q’ of the field 6’, defined 

in equation (20), can be expressed in terms of the 3-point amplitude Q for the underlying density field, 

6: 
Q, = Q (S9 + 45 + 9fi) cl+ &1)(1+ &do + 473) 

Plq(l+ n&)2(1 +422)2+ (1 - 3) + (2 - 3) (27) 

Note that the ratio Q’/Q has no explicit angular dependence in &pace, i.e., it depends only on the 

magnitudes kl, k2, k3. Using this property, we can point to several important limiting behaviors of 

Q’/Q. For example, on small length scales, kl, k2, k3 ZD R;‘, we obviously retrieve Q’ = Q, and in the 

opposite limit of large .+X&S (small tr@ngles in k-space), kl, k2,3 < R;‘, we havcQ’/Q N l/(1 + K), 

independent of the power spectrum and the triangle configuration. The other limiting case of interest is 

a triangle with two large sides and on% smaU side,~e.g., kl, k2 > R;‘, k3 a R;‘: if the power spectrum 

is approximately a power law, P(k) cc k”, then for n > 0 (and k3/k1c2) < (I+ t~)-~/“), Q’/Q z 1 + n; 

for n = 0, Q’/Q = 3(1+ x)/[l + 2(1+ s)~]; and for n < 0, Q’/Q N l/(1 + 6). 

As noted in section III, an important class of con&rations is equilateral triangles in k-space, 

kl = k2 = k3 = k, for which 
(1 +dJ3 QA 

Q',.= QA (1+ &)4 = (1+ KG) (28) 

With the Gaussian CGF smoothing window, G(k) = e-(kRa)‘/2, for SC es al 1 arger than R., kR. < 1, we 

have Qh = QA (1 + K)-‘, whereas fqr scales smaller than R., kR. B 1, we have QL = &A = 4/7. For 

the preferred parameter values considered by BCFW to match the APM data, R, = 20 h-’ Mpc and 

n = 2.29, we see that within the range of the weakly non-linear regime, k-’ N 10 h-’ Mpc, there is a 

sharp transition from Q’ A z QA to Qk = 0.3Q~. We explore the observational consequences of this 

behavior in the next section (see Fig. 3). 

It is &, of interest to study the normalized skewness of the smoothed cooperative density field, 

S;(R) =~6’3(r;R))/(6R(z;R))2, h w ere the Fourier-transform of the top-hat-smoothed cooperative 

density field is 6’(k; R) = w(k&)6(&)[1 + nG(kR.)], with W(kR) given by (15) and Q(kR*) given by 

(11). The function g3(R) is shown, for-the CDM oh = 0.5 spectrum with the canonical CGF parameters 

K.= 2.29, R. = 20h-’ Mpc, as’the curve labelled CGF in Fig. 2. As expected, in this case S3 has a 

steeper d.ependence on R for scales R~s R, than either the standard or low-density CDM models, due 

to the rathei sharp, non-power-law Eature~ in 6’(k) arising from cooperative effects. These different 

behaviors tie compared with data in Fig. 4 below. 
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One can also define higher order amplitues, QJ, by ( aJ(k) ) z QJP~-‘, with Q3 = Q. From the 

above arguments it is straightforward to show that, in general, for regular J-sided polygons in &pace, 

(29) 

Again, for a Gaussian filter 0, we have Q; = QJ (1 + PC)- ‘+2 for kR8 < 1 and Q’, = QJ for kR, B 1. 

Thus if the underlying density field 6(z) is hierarchical, with QJ approximately constant as a function 

of k, the new field 6’ is also hierarchical, ( 61J) = Q’, ( 6’2)J-1, with the hierarchical amplitudes Q; 

varying with scale from Q’, = QJ to Q; = QJ (1 + IC)-‘+~. 

4.2 Non-linear, local bias 

In the previous subsection, we considered the three-point function for the cooperative density field 

6’(z) defined in equation (5). We noti want to relate this to the three-point function of the galaxy field 

6,(z), defined by the arbitrary, local, non-linear transformation of the cooperative field in equation (6). 

Fry & Gastaiiaga (1993a) have shown that, in the weakly non-linear limit ( a2) < 1, the hierarchical 

relation between the moments of the density field, (6’) 0: ( 62)j-1, is preserved under an arbitrary 

local transformation of this form. Nevertheless, the higher order moments of the galaxy field will differ 

quantitatively from the hierarchical amplitudes of the cooperative field. The analysis of I+y & Gaztaiiaga 

(1993a) is valid L long as the amplitudes of the original fiizld (here, the cooperative field 6’(z)) are of 

zeroth order in the twc-point function (2 = ( 6R ), i.e., under the assumption that Q’, = 0 (6O )‘; in 

particular, their results apply even if the original field is not hierarchical in the strict sense that Q; is 

constant. 

Let the hierarchical amplitudes of the smoothed galaxy field 6g(~) = f(6’) be denoted by Qo,~. To 

consider the j-point galaxy amplitude, Q9 E Qg,3, we must keep terms up to quadratic order in 6’ in 

the expansion (7) of the biasing function f(6’). Applying the results of Fry and Gaztaiiaga (1993a), we 

find 

Qg=b-‘(Q’+cz)+O(6’) , (30) 

where CJ = b/b and b = bl in equation (7), and Q’, the 3-p&t amplitude for the cooperative field 6’, 

is related to the 3-point amplitude of the underlying density M&by equation (27). For example, for 

the high peaks model, in the limit v IS 1 and o a: 1, the bias function f(6’) is exponential, and we 

have c2 = b. This suggests that the c2 term in (30) is of the same order as the Q’ term, i.e., that the 

contribution of non-linear bias to the gal&y 3-point function may be comparable to the second-order 

gravitational contribution. For equilateral triangles in k-space, we can use (28) and (30) to relate the 

galaxy 3-point amplitudeQ,,A to that of the underlying density field, &A, 

With~Q~ = 4/T. On small scales, k,vL-> k B R;‘, where cooperative effects are negligible, but 

still in the mildly non-linear regime ( 62’) < 1, we have Qs,ss rz b-‘(Q + c2), just the result in the 
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absence of cooperative effects. On kge SC&S, k q R;‘, the galkxy 3-point amplitude is Qs,~s E 

b-‘[(l + n)-‘Q + 4. The fractional change in Qg between large (kR, < 1) and small (kR, > 1) SC&S 

is thus 
L1Q,_ n Q 
Q9 ( > ix PQS (32) 

For the case of purely linear biasing, c2 = 0, this gives AQg/Qg,ss Y n/(1 + n), independent of b or Q. 

A similar expression can be derived for the hierarchical amplitu$es SJ = cJ/$I-’ of the volume- 

averaged correlation functions. Following the arguments above, the small-to-large-scale variation in the 

galaxy 3-point amplitude S, E S,,3 is related to the density amplitude S E S3 by 

(33) 

Again for purely linear bias, this gives AS,/S,,ss u n/(1 + n). 

Finally, for the non-CGF models, note that equation (30) relates the galaxy and matter density 

3-point amplitudes with the replacement Q’ + Q (Fry and Gastaiiaga 1993a); we will make use of 

this in comparing the CDM models to observations below. It is also worth reiterating that all of our 

results apply to models with initially Gaussian fluctuations. For non-Gaussian models, there is an 

additional first-order contribution to the 3-point amplitude, which can be thought of as a (possibly 

scale-dependent) contribution to the parameter ~2. 

5 Comparison with observations 

We new compare the model predictions for the three-point amplitudes with observations from the 

CfA, SSRS, and Perseus-Pisces redshift surveys. As above, we focus on three models: standard CDM 

(Rh = 0.5), low-density CDM (Oh = 0.2), and CGF-modified standard CDM, and we employ the results 

of second-order perturbation theory. Comparison with the observed galaxy amplitudes, $3 and Qs,a, 

can in principle be used to constrain the bias parameters b and c2 -k well as the CGF parameters K 

and R,. In combination with other observations, e.g., of the galaxy power spectrum, and of the large- 

angle microwave anisotropy as seen by COBE DMR and other experiments, these results can help point 

toward preferred models for large-scale structure. 

5.1 Limits from &A 

Baumgart and Fry (1991) have estimated the galaxy power spectrum and the Fourier-space three-point 

amplitude for equilateral triangle configurations, QA, using data from the Center for Astrophysics and 

Perseus-Pisces redshift surveys. It is worth noting that the power spectrum P(k) for these samples 

does show evidence for the extra large-scale power infewed in other spectroscopic (e.g., IRAS) and 

photometric (e.g., APM) surveys. Their reFult.6 for QA(k), averaged over 3 subsamples each from the 

CfA and Perseus-Pisces surveys, are shown in Fig. 3. The errors bars in each bin indicate the variancp 

between subsamples, and we only show results for values of the wavenumber away from the strongly 

non-linear regime. 
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The striking feature of these results is the relativi: constancy of the three-point amplitude over more 

than a decade in wavenumber, k = 0.1 - 1.6( ho* Mpc)-‘. Moreover, the observed amplitude of QA 

over this range is apparently in reasonable agreement with the prediction of second-order perturbation 

theory without cooperative effects, and under the assumption of no bias, b = 1, c2 = 0, namely &A = 4/7 

(shown as the short-dash line in Fig. 3). Turning this around, using the perturbation theory relation 

Q s,A = b-‘[(4/7) + ~21, one can in principle use the results in Fig. 3 to constrain the parameter space 

of b - c2 for any model with scale-independent bias. In practice, however, the derived constraints 

are not terribly stringent. First, searching this two-dimensional space and treating the data points 

as independent, one finds a minimum x2 E 25.5 (for 12 data points and a 2-parameter fit, i.e., 10 

degrees of freedom) for c2 u 0.52b - (4/7). This is consistent with a mean value of QA E 0.52 over 

.the plotted range of k, close to the expected perturbation theory result of 4/7 = 0.57. In particular, 

for purely linear bias, c2 = 0, the best fit value of the bias parameter is b = 1.1 zk 0.1, consistent with 

the visual impression from Fig. 3. On the other hand, this constraint on the bias parameter space 

should be interpreted with a great deal of caution, since the best fit curve for perturbation theory has 

a &i-squared of 2.5 per degree of freedom, more than 3-a above the expected value. A better fit to the 

data would be obtained with a model in which QA falls gently with increasing k. However, given the 

likelihood that the true data errors are larger than those shown here, it would certainly be premature 

to exclude the perturbation theory result on this basis. 

The statements above apply for local, non-cooperative bias models. On the other hand, as noted in 

section 4.1, the CGF model predicts a dramatic scale-dependence of QA(k) around the scale &R. - 1. 

This behavior is shown in Fig. 3 for the 3 CGF parameter choices considered by BCFW, ri,R. = 

0.84,lO he1 Mpc (dot-long dash curve), 2.29, 20 h-’ Mpc (solid curve), and 4.48, 30 h-’ Mpc (dot-short 

dash curve). As above, these models are plotted for e2 = 0, b = 1. The ‘smoking gun’ of these models is 

the sharp downturn in QA on large scales. Since, within the observational errors, no such downturn is 

oL%erved, one can use this to constrain the CGF parameter space. In particular, for R. = lOh-’ Mpc, 

K = ‘0.84, the CGF model is always a significantly poorer fit to the data than the scale-independent 

bias models. For this choice of CGF parameters, the requirement of a fit that is within l-o of the scale- 

independent models (i.e., a fit with x2 < 3 per degree of freedom) necessitates a linear bias parameter 

b > 2.6 and a significant non-linear bias, q > 0.8. In this case, the large linear bias factor suppresses 

the gravitational and cooperative contribution to Q, and the match with the observatibns is obtained 

chiefly by the non-linear bias. This would make the apparent agreement between the observed QA 

and the perturbation theory prediction of 4/7 purely coincidental. This behavior is an instance of OUT 

general conclusion that models with sharply varying scale-dependent bias are forced to uncomfortably 

large values of the linear bias b. On the other hand, for larger values of the CGF ‘scale of intiuence R,, 

the 3-point data do not extend to large enough scales for the downturn to be significant. Consequently, 

the &, = 20h-’ Mpc CGF model, when fitted to the QA(k) data, occupies the same region in the 

two-dimensional b - c2 bias parameter space, with only a slightly higher x2 th& the non-CGP models. 

Clearly, to more strongly constrain or rule out the CGF model, it would be useful to have data on 
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QA(k) which extends down to k 5 0.05 h Mpc-‘; this should be feasible with currently available 

redshift samples drawn from the IRAS catalog. 

5.2 Limits on & 

To compare model predictions to observations of the volume-averaged normalized skewness S3, we use 

the results of the S3 analysis by Gaztaiaga (1992) for-samples in the CfA and SSRS redshift catalogs 

(we use the largest samples, denoted SSRS115 and CfA92 in Gataiaga 1992). The average over these 

samples is shown in Fig. 4. where we plot S,,3 as a function of top-hat smoothing radius (or cell size) 

R. Each data point in Fig. 4 is an average over bins that correspond to different degrees of freedom: 

for a given value of R, the average number of galaxies in that cell size is at least one unit larger than 

in the cell of the next smallest value of R shown-in the figure. The errorbars shown here are the larger 

of the intersample dispersion in the given R-bin and the intrinsic errors in the original samples. From 

Fig. 4, it is apparent that S,,3(R) z 2 is quite constant over the range of R shown, with a variation of 

about 25%. We also show in Fig. 4 the same model predictions for S3 as in Fig. 2. again for the bias 

parameters b = 1 and ~2 = 0. The reader should mentally note that the curves in Fig. 4 can be shifted 

vertically, and have their slopes magnified or depressed, by changing the values of b and cz. 

In Fig. 5 we plot the contours of x2 for the comparison between the three models and the S3 

observations in the b - c2 parameter space. The 3 contours correspond to x2 = 5, 8, and 14 for 11 

data points fit with 2 parameters (9 degrees of freedom). Again, because of the way error bars have 

been assigned to the data, we caution against absolute interpretations of these x2 values; however, the 

difference in x2 values for different models should provide B measure of the relative goodness of fit to 

the data. In this sense, both CDM models give comparably good fits to the data for values of the bias 

parameter above b = 1, with b > 1.8 for the best fit (lowest x2 contour) range. For a given value of 

b, the non-linear bias c2 is slightly larger for the Rh = 0.2 case than for standard Rh = 0.5 CDM. For 

the CGF model, on the other hand, the linear bias parameter must satisfy b > 2 for a reasonable fit, 

while the best fit range requires b > 3. The large value of bias for the CGF model inferred from S3 

is qualitatively similar to the result above from the Fourier-amplitude QA: fits to the data with large 

values of b are in a sense ad hoc, because the agreemiat is obtained by depressing the gravitational 

contribution and then fitting with the non-linear bias c2 alone. In particular, for cz/b z 0.6, the galaxy 

amplitude S g,3 = 2 z 3Q is completely produced by non-linear bias, not by gravitational or cooperative 

effects. Therefore the fit for the CGF model, for which q/b = 0.6, does not really reflect agreement 

between the data and the CGF model, but rather the possibility that, in any model, the observed signal 

comes from the non-linear component of biasing. 

At this point, it is worth noting several features of the & observations. The skewness has been 

measured from other redshift and angular catalogs in addition to those used above; a useful compendium 

of results in the literature is given in Fry and Gaztti.aga (1993b). Except for the Lick catalog, the values 

of S3 inferred from other-surveys are broadly consistent with those shown in Fig. 4 (e.g., Bouchet, etal. 

1991, 1993, Meiksin, etal. 1992). A second issue concerns redshift distortions of the higher order 
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moments. It is well known that peculiar velocities distort the galaxy power spectrum (Kaiser 1987), so 

that the power measured in a redshift catalog does not precisely represent the clustering power in real 

space. The transformation from the real space to redshift space power spectrum depends on the ratio 

@/b. The extent to which this affects higher moments has been somewhat controversial: in N-body 

simulations, Lahav &al. (1993) find that S3 is significantly distorted in redshift space in the strongly 

non-linear regime, while C&s, &al. (1993) do not see this alText. In their analysis of higher moments 

in the CfA, SSRS, and IRAS 1.9 Jy catalogs, Fry and Gaatafraga (1993b) find that the volume-average 

3-point function & is a&ted by redshift distortions, but that the normalized skewness S3 is insensitive 

to them. This empirical insensitivity justifies our comparison of the model results to the S3 data in 

redshift spare. 

We finish this section with some comments about the implications of the Q and S3 observations for 

the bias parameter(s) and how these compare with other data on large-scale structure. We will focus 

on the CDM models (as opposed to the CGF model). First, as noted above, the QA observations do 

not significantly constrain the bias parameter b once one allows for non-linear bias (although they do 

imply a relation between b and cz). On the other hand, the S3 observations do appear to favor larger 

values of the bias, b 2 1.8, for both CDM models. In a simple bias prescription, for CfA galaxies we 

would expect baa w 1, so that, taken at face value, this constraint on b would imply a low normalization 

amplitude for the CDM models, 0s s 0.56. For standard Rh = 0.5 CDM, this is uncomfortably low 

compared to the amplitude inferred from the COBE DMR measmement of the large-angle microwave 

~sot*q% b8,dmr N 1. For the low-density CDM model, the 0s amplitude inferred from COBE has a 

large range, depending on the choice of fl and h (Efstathiou, Bond, and White 1992). For example, 

for the choice SI = 0.3, h = 2/3, Efstathiou, Bond, and White (1992) infer 0s N 0.7 from COBE, 

closer to the range implied by the S3 observations. (On the other hand, for lower R and larger h, e.g., 

fl = 0.2 and h = 1, the COBE value for 0s becomes larger than unity, which is disfavored by the 

3-point data.) While it is tempting to draw conclusions about the viability of different models from 

this comparison, in particular, to argue against standard COBEnormalized CDM, there are potential 

pitfalls which mitigate against making high confidence-level statements of this type. In particular, if 

one focused only on the S3 data in Fig.4 at large R (where the perturbation result is more trustworthy), 

one would conclude that standard Rh = 0.5 CDM fits the data well with b z 1, c2 w 0, in agreement 

with the COBE normalization. A conclusion which can be drawn with more conhdence from Fig. 5 is 

that the high peaks model prediction q/b = 1 is inconsistent with the S3 data for any of the Gaussian 

models we have studied. 

6 Conclusion 

We have studied the three-point galaxy correlations in models of large-scale structure, focusing on the 

CDM model and its variants with extra large-scale power, working in the context of biased galaq 

formation in second order perturbation theory. In the non-local bias scheme, galaxies form and light up 

in just such a way as to create the illusion of extra power. We have shown that models with effective 
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scale-dependent (or non-local) bias, such as the CGF model, can display the same enhanced large- 

scale power as other variations of standard CDM, but that they break the scaling hierarchy between 

the two- and three-point functions that arises from gravitational evolution. The resulting step in the 

Fourier-space three-point function Qa(k) at the scale k u R;’ of the bend in the bias function (which 

produces the extra large-scale power) should provide a strong observational test of scale-dependent 

bias models. However, this step can be partially masked if b is large and if there is significant non- 

linear bias. Consequently, using data currently available, we have shown that the scale-dependent bias 

explanation of large-scale power requires a luger value of the linear bias factor b than in the standard 

CDM model, and a substantial non-linear bias, in order to account for the observed flatness of the 

three-point amplitudes. 

On the other hand, the three-point amplitudes S3 and Q do not strongly discriminate between stan- 

dard and low-density CDM with scale-independent bias; this conclusion also extends to the tilted CDM 

and mixed dark matter models. In these cases, however, the S3 data tentatively point to moderately 

large values of the bias, b 2 1.8, but more data on large scales is needed to confhm this. We emphasize 

that it is useful to have observational tests using both S3 and Q A, since the former depends on the 

power spectrum while the latter does not. 

For completeness, we note that the CGF and other non-local bias models have other hurdles to 

overcome in addition to the higher moments. In the CGF and related models, the effective bias fac- 

tor increases with lengths&e. On the other hand, recent N-body simulations of CDM incorporating 

hydrodynamics suggest that the bias factor b(k) d ecreoses with lengths&e (Cf. Katz, Hernquist, and 

Weinberg 1992, Fig.2 of Cen and Ostriker 1992). In addition, the modifications introduced by CGF 

do not apparently address the difficulties which CDM faces with excessive p&wise velocities on small 

scales (Gelb and Bertschinger 1993 and references therein). On the other hand, it would be interesting 

to study whether there might be a cooperative analogne for velocity bias (Couchmau and Carlberg 

1992). 
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Figure Captions 

Fig. 1. The two-point spatial correlation function E(r)/(bug)* in linear theory for standard CDM 

(Rh = 0.5), low-density CDM (Rh = 0.2), and CGF-modified standard CDM with K = 2.29, R, = 

20 h-’ Mpc. 

Fig. 2. The volume-averaged normalized skewness S3(R) in second-order theory is shown as a function 

of top-hat smoothing radius R for the three models of Fig. 1. 

Fig. 3. The Fourier-space 3-point amplitude for equilater?J triangles &a(k) is shown as a function of 

wavenumber k. The data points (from Baumgart and FYy 1991) are an average over Lbsamples from 

the CfA and Perseus-Pisces surveys. -The model points are for standard perturbation theory (short 

dashed line, QA = 4/7), and for the three CGF models discussed by BCFW: n, R, = 0.84,lO h-’ Mpc 

(dot-long dash), 2.29,20 h-’ Mpc (solid), and 4.48,30 h-’ Mpc (dot-short dash). For the models, we 

have taken b = 1, c2 = 0. 

Fig. 4. The volume-average skewness S3(R) for the same models as in Fig. 2 are shown in comparison 

with data from the CfA and SSRS surveys (from Gaztaiaga 1992), Th e models are shown with b = 1, 

c* = 0. 

Fig. 5. Contours of x2 = 5, 8, and 14 (for 9 degrees of freedom) in the b - cz parameter space for fits 

of the 3 models to the data in Fig. 4. The darker regions correspond t6 lower x2. (a) CDM fth = 0.5, 

(b) CDM S-lb = 0.2, (c) CGF n = 2.29, R. = 20 h-’ Mpc. 
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